

An exploration of the underlying semantic features of masculine generics in German

Dominic Schmitz¹, Viktoria Schneider¹, Janina Esser²

¹Heinrich-Heine-Universität Düsseldorf

² Association for Diversity in Linguistics

in German, role nouns such as Anwalt 'lawyer' can be used as generic forms

word	referent gender(s)	grammatical gender	number
Anwalt	male	masculine	
Anwalt	male or female	masculine	singular
Anwältin	female	feminine	
Anwälte	male	masculine	
Anwälte	male and/or female	masculine	plural
Anwältinnen	female	feminine	

in German, role nouns such as Anwalt 'lawyer' can be used as generic forms

		word	referent gender(s)	grammatical gender	number
target word paradigm		Anwalt	male	masculine	
		Anwalt	male or female	masculine	singular
		Anwältin	female	feminine	
		Anwälte	male	masculine	
		Anwälte	male and/or female	masculine	plural
	_	Anwältinnen	female	feminine	

in German, role nouns such as Anwalt 'lawyer' can be used as generic forms

		word	referent gender(s)	grammatical gender	number
target word paradigm		Anwalt	male	masculine	
		Anwalt	male or female	masculine	singular
		Anwältin	female	feminine	
		Anwälte	male	masculine	
		Anwälte	male and/or female	masculine	plural
		Anwältinnen	female	feminine	

• generic forms are not different from explicit masculine forms in their orthographic or phonological form

in German, role nouns such as Anwalt 'lawyer' can be used as generic forms

	word	referent gender(s)	grammatical gender	number
target word paradigm	Anwalt	male	masculine	
	Anwalt	male or female	masculine	singular
	Anwältin	female	feminine	
	Anwälte	male	masculine	
	Anwälte	male and/or female	masculine	plural
	Anwältinnen	female	feminine	

- generic forms are not different from explicit masculine forms in their orthographic or phonological form
- they are used to describe individuals of all genders in singular and plural contexts

in German, role nouns such as Anwalt 'lawyer' can be used as generic forms

	word	referent gender(s)	grammatical gender	number
target word paradigm	Anwalt	male	masculine	
	Anwalt	male or female	masculine	singular
	Anwältin	female	feminine	
	Anwälte	male	masculine	
	Anwälte	male and/or female	masculine	plural
	Anwältinnen	female	feminine	

- generic forms are not different from explicit masculine forms in their orthographic or phonological form
- they are used to describe individuals of all genders in singular and plural contexts
- generic forms are traditionally assumed to "abstract away" notions of gender; to be "gender-neutral" (Doleschal, 2002)

 however, previous research has cast doubt on the gender-neutral use of masculine generics

- however, previous research has cast doubt on the gender-neutral use of masculine generics
- most (if not all) behavioural studies on the subject find one overall result

→ masculine generics are not gender-neutral but show a clear bias towards the explicit masculine reading (e.g. Demarmels, 2017; Garnham et al., 2012; Gygax et al., 2008; Irmen & Kurovskaja, 2010; Irmen & Linner, 2005; Koch, 2021; Misersky et al., 2019; Stahlberg & Sczesny, 2001)

- however, previous research has cast doubt on the gender-neutral use of masculine generics
- most (if not all) behavioural studies on the subject find one overall result

→ masculine generics are not gender-neutral but show a clear bias towards the explicit masculine reading (e.g. Demarmels, 2017; Garnham et al., 2012; Gygax et al., 2008; Irmen & Kurovskaja, 2010; Irmen & Linner, 2005; Koch, 2021; Misersky et al., 2019; Stahlberg & Sczesny, 2001)

• even though a masculine generic may be used by a speaker with the intention of considering all genders...

- however, previous research has cast doubt on the gender-neutral use of masculine generics
- most (if not all) behavioural studies on the subject find one overall result

→ masculine generics are not gender-neutral but show a clear bias towards the explicit masculine reading (e.g. Demarmels, 2017; Garnham et al., 2012; Gygax et al., 2008; Irmen & Kurovskaja, 2010; Irmen & Linner, 2005; Koch, 2021; Misersky et al., 2019; Stahlberg & Sczesny, 2001)

- even though a masculine generic may be used by a speaker with the intention of considering all genders...
- ...this intention is not fully translated by the receiver's comprehension system

- however, previous research has cast doubt on the gender-neutral use of masculine generics
- most (if not all) behavioural studies on the subject find one overall result

→ masculine generics are not gender-neutral but show a clear bias towards the explicit masculine reading (e.g. Demarmels, 2017; Garnham et al., 2012; Gygax et al., 2008; Irmen & Kurovskaja, 2010; Irmen & Linner, 2005; Koch, 2021; Misersky et al., 2019; Stahlberg & Sczesny, 2001)

- even though a masculine generic may be used by a speaker with the intention of considering all genders...
- ...this intention is not fully translated by the receiver's comprehension system
- instead, a reading favouring male individuals is received

Issue 1: Stereotypicality

Almost no previous research included effects of stereotypicality in their analyses on masculine generics.

Issue 1: Stereotypicality

Almost no previous research included effects of stereotypicality in their analyses on masculine generics.

Issue 2: Underlying Representations

No previous research investigated the underlying representations of masculine generics in order to account for their masculine bias.

Issue 1: Stereotypicality

Almost no previous research included effects of stereotypicality in their analyses on masculine generics.

Issue 2: Underlying Representations

No previous research investigated the underlying representations of masculine generics in order to account for their masculine bias.

Issue 1: Stereotypicality

Almost no previous research included effects of stereotypicality in their analyses on masculine generics.

 \rightarrow include stereotypicality ratings in analyses

Issue 2: Underlying Representations

No previous research investigated the underlying representations of masculine generics in order to account for their masculine bias.

Issue 1: Stereotypicality

Almost no previous research included effects of stereotypicality in their analyses on masculine generics.

 \rightarrow include stereotypicality ratings in analyses

Issue 2: Underlying Representations

No previous research investigated the underlying representations of masculine generics in order to account for their masculine bias.

→ use linear discriminative learning (e.g. Baayen et al., 2019) to explore semantics

Research questions

Research questions

Research Question 1

Is the bias of masculine generics affected by stereotypicality?

Research questions

Research Question 1

Is the bias of masculine generics affected by stereotypicality?

Research Question 2

Does linear discriminative learning offer an insight into the underlying nature of the masculine generic's bias?

• we simulate an individual's mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al., 2019)

- we simulate an individual's mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al., 2019)
- for this, semantics and word forms are required as starting points

- we simulate an individual's mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al., 2019)
- for this, semantics and word forms are required as starting points

corpus

- we simulate an individual's mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al., 2019)
- for this, semantics and word forms are required as starting points

- we simulate an individual's mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al., 2019)
- for this, semantics and word forms are required as starting points

- we simulate an individual's mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al., 2019)
- for this, semantics and word forms are required as starting points

Corpus

 corpus created based on Leipzig Corpora Collection's (Goldhahn et al., 2012) subcorpus "News"

- corpus created based on Leipzig Corpora Collection's (Goldhahn et al., 2012) subcorpus "News"
 - 49,044,960 word form tokens

- corpus created based on Leipzig Corpora Collection's (Goldhahn et al., 2012) subcorpus "News"
 - 49,044,960 word form tokens
 - 30,000 sentences with target word paradigm members

- corpus created based on Leipzig Corpora Collection's (Goldhahn et al., 2012) subcorpus "News"
 - 49,044,960 word form tokens
 - 30,000 sentences with target word paradigm members
 - 800,000 sentences with further word forms

- corpus created based on Leipzig Corpora Collection's (Goldhahn et al., 2012) subcorpus "News"
 - 49,044,960 word form tokens
 - 30,000 sentences with target word paradigm members
 - 800,000 sentences with further word forms
- target words adopted from a study on stereotypicality of role nouns (Gabriel et al., 2008)

- corpus created based on Leipzig Corpora Collection's (Goldhahn et al., 2012) subcorpus "News"
 - 49,044,960 word form tokens
 - 30,000 sentences with target word paradigm members
 - 800,000 sentences with further word forms
- target words adopted from a study on stereotypicality of role nouns (Gabriel et al., 2008)
- triphones of target word paradigm members and content/function words

Semantic vectors

 semantic vectors computed based on the 830,000 sentence corpus for words and inflectional functions with Naive Discriminative Learning (NDL; e.g. Baayen & Ramscar, 2015)

Semantic vectors

 semantic vectors computed based on the 830,000 sentence corpus for words and inflectional functions with Naive Discriminative Learning (NDL; e.g. Baayen & Ramscar, 2015)

 \rightarrow semantic vectors for bases, function words, and inflection

• NDL follows the Rescorla-Wagner rules (Rescorla & Wagner, 1972)

Semantic vectors

 semantic vectors computed based on the 830,000 sentence corpus for words and inflectional functions with Naive Discriminative Learning (NDL; e.g. Baayen & Ramscar, 2015)

- NDL follows the Rescorla-Wagner rules (Rescorla & Wagner, 1972)
- most importantly, these rules state that

Semantic vectors

 semantic vectors computed based on the 830,000 sentence corpus for words and inflectional functions with Naive Discriminative Learning (NDL; e.g. Baayen & Ramscar, 2015)

- NDL follows the Rescorla-Wagner rules (Rescorla & Wagner, 1972)
- most importantly, these rules state that
 - outcomes (word forms) are predicted by cues (words/inflection)

Semantic vectors

 semantic vectors computed based on the 830,000 sentence corpus for words and inflectional functions with Naive Discriminative Learning (NDL; e.g. Baayen & Ramscar, 2015)

- NDL follows the Rescorla-Wagner rules (Rescorla & Wagner, 1972)
- most importantly, these rules state that
 - outcomes (word forms) are predicted by cues (words/inflection)
 - the associative strength between an outcome and a cue is represented by a single number

Semantic vectors

 semantic vectors computed based on the 830,000 sentence corpus for words and inflectional functions with Naive Discriminative Learning (NDL; e.g. Baayen & Ramscar, 2015)

- NDL follows the Rescorla-Wagner rules (Rescorla & Wagner, 1972)
- most importantly, these rules state that
 - outcomes (word forms) are predicted by cues (words/inflection)
 - the associative strength between an outcome and a cue is represented by a single number
- we used each sentence to predict each individual word within the sentence by the other words in that sentence

	all	lawyer	PLURAL	be	nice	villain	evil
lawyer							
villain							

Example: All lawyers are nice.

	all	lawyer	PLURAL	be	nice	villain	evil
lawyer	+						
villain							

23/11/2022

	all	lawyer	PLURAL	be	nice	villain	evil
lawyer	+	+					
villain							

	all	lawyer	PLURAL	be	nice	villain	evil
lawyer	+	+	+				
villain							

	all	lawyer	PLURAL	be	nice	villain	evil
lawyer	+	+	+	+			
villain							

	all	lawyer	PLURAL	be	nice	villain	evil
lawyer	+	+	++	+			
villain							

	all	lawyer	PLURAL	be	nice	villain	evil
lawyer	+	+ +		+	+		
villain							

	all	lawyer	PLURAL	be	nice	villain	evil
lawyer	+	+	++	+	+	-	-
villain	-	-	-	-	-		

Semantic vectors

 repeating this procedure for 830,000 sentences, we obtained association weights for all target words, inflectional functions, and a huge number of other words

- repeating this procedure for 830,000 sentences, we obtained association weights for all target words, inflectional functions, and a huge number of other words
- taking these rows of association weights, we obtain semantic vectors of individual words and inflectional functions of length 7,500

- repeating this procedure for 830,000 sentences, we obtained association weights for all target words, inflectional functions, and a huge number of other words
- taking these rows of association weights, we obtain semantic vectors of individual words and inflectional functions of length 7,500
- for example:

	all	lawyer	PLURAL	be	nice	villain	evil
lawyer	0.31	1.0	0.57	0.43	0.15	0.00071	0.0007
villain	0.0003	0.001	0.0005	0.0004	0.0091	1.0	0.96

- repeating this procedure for 830,000 sentences, we obtained association weights for all target words, inflectional functions, and a huge number of other words
- taking these rows of association weights, we obtain semantic vectors of individual words and inflectional functions of length 7,500
- for example:

lawyer	all	lawyer	PLURAL	be	nice	villain	evil
lawyer	0.31	1.0	0.57	0.43	0.15	0.00071	0.0007
villain	0.0003	0.001	0.0005	0.0004	0.0091	1.0	0.96

Semantic vectors

• the members of our target word paradigms are complex words

- the members of our target word paradigms are complex words
- thus, their semantics need to be assembled

- the members of our target word paradigms are complex words
- thus, their semantics need to be assembled

target form	base		number		gram. gender		genericity
Anwalt	Anwalt	+	singular	+	masculine	+	generic
Anwalt	Anwalt	+	singular	+	masculine	+	explicit
Anwältin	Anwalt	+	singular	+	feminine	+	explicit

Forms

Forms

• we use trigrams as unit for a word's form

Forms

- we use trigrams as unit for a word's form
- trigrams / triphones have been shown to capture the form variability of words well (e.g. Chuang et al., 2020; Schmitz et al., 2021)

Forms

- we use trigrams as unit for a word's form
- trigrams / triphones have been shown to capture the form variability of words well (e.g. Chuang et al., 2020; Schmitz et al., 2021)

target form	#an	anv	nva	val	alt	lt#	nvE	vEl	Elt	ltI	tIn	In#
Anwalt	1	1	1	1	1	1	0	0	0	0	0	0
Anwalt	1	1	1	1	1	1	0	0	0	0	0	0
Anwältin	1	1	0	0	0	0	1	1	1	1	1	1

- we simulate an individual's mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al., 2019)
- for this, semantics and word forms are required as starting points

- we simulate an individual's mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al., 2019)
- for this, semantics and word forms are required as starting points

- we simulate an individual's mental lexicon by implementing a linear discriminative learning network (e.g. Baayen et al., 2019)
- for this, semantics and word forms are required as starting points

Learning comprehension

Learning comprehension

 comprehension is learnt by linearly mapping the matrix of forms onto the matrix of semantic vectors

Learning comprehension

 comprehension is learnt by linearly mapping the matrix of forms onto the matrix of semantic vectors

Learning comprehension

• comprehension is learnt by linearly mapping the matrix of forms onto

the matrix of semantic vectors

Learning comprehension

• comprehension is learnt by linearly mapping the matrix of forms onto

the matrix of semantic vectors

Method

Learning comprehension

Method

Learning comprehension

 using the original semantic vectors and the semantic vectors estimated by the comprehension learning, we can extract semantic measures

Method

Learning comprehension

 using the original semantic vectors and the semantic vectors estimated by the comprehension learning, we can extract semantic measures

Variables

Variables

• measures derived from the LDL implementation

Variables

- measures derived from the LDL implementation
 - COMPREHENSION QUALITY

correlation of a target's original and estimated vectors

Variables

- measures derived from the LDL implementation
 - COMPREHENSION QUALITY

correlation of a target's original and estimated vectors

• NEIGHBOURHOOD DENSITY

correlation of a target with its 8 nearest neighbours

Variables

- measures derived from the LDL implementation
 - COMPREHENSION QUALITY

correlation of a target's original and estimated vectors

• NEIGHBOURHOOD DENSITY

correlation of a target with its 8 nearest neighbours

• ACTIVATION DIVERSITY

Euclidian distance of a target's vector

Variables

- measures derived from the LDL implementation
 - COMPREHENSION QUALITY

correlation of a target's original and estimated vectors

• NEIGHBOURHOOD DENSITY

correlation of a target with its 8 nearest neighbours

• ACTIVATION DIVERSITY

Euclidian distance of a target's vector

• STEREOTYPICALITY JUDGEMENTS taken from Gabriel et al. (2008)

Multinomial logistic regression

Multinomial logistic regression

• dependent variable: GENERICITY

Multinomial logistic regression

• dependent variable: GENERICITY

singular masculine generic; singular masculine explicit; singular feminine explicit plural masculine generic; plural masculine explicit; plural feminine explicit

• explanatory variables

Multinomial logistic regression

• dependent variable: GENERICITY

- explanatory variables
 - ACTIVATION DIVERSITY

Multinomial logistic regression

• dependent variable: GENERICITY

- explanatory variables
 - ACTIVATION DIVERSITY
 - a PC consisting of COMPREHENSION QUALITY & NEIGHBOURHOOD DENSITY

Multinomial logistic regression

• dependent variable: GENERICITY

- explanatory variables
 - ACTIVATION DIVERSITY
 - a PC consisting of COMPREHENSION QUALITY & NEIGHBOURHOOD DENSITY
 - STEREOTYPICALITY JUDGEMENTS

Activation diversity

Activation diversity

23/11/2022

Activation diversity

Activation diversity

Comprehension quality & neighbourhood density

23/11/2022

Comprehension quality & neighbourhood density

Stereotypicality judgements

no significant differences

23/11/2022

Summary

Summary

 masculine generic and masculine explicit forms are highly similar in terms of

Summary

- masculine generic and masculine explicit forms are highly similar in terms of
 - ACTIVATION DIVERSITY
 - \rightarrow they co-activate entries in the mental lexicon to a similar extent

Summary

- masculine generic and masculine explicit forms are highly similar in terms of
 - ACTIVATION DIVERSITY

 \rightarrow they co-activate entries in the mental lexicon to a similar extent

• COMPREHENSION QUALITY & NEIGHBOURHOOD DENSITY

 \rightarrow they are comprehended equally well

 \rightarrow they live in similarly dense neighbourhoods

Summary

- masculine generic and masculine explicit forms are highly similar in terms of
 - ACTIVATION DIVERSITY
 - \rightarrow they co-activate entries in the mental lexicon to a similar extent
 - COMPREHENSION QUALITY & NEIGHBOURHOOD DENSITY
 - \rightarrow they are comprehended equally well
 - \rightarrow they live in similarly dense neighbourhoods
- feminine explicits are **significantly different** as compared to masculine forms in regard to all semantic measures

Summary

- masculine generic and masculine explicit forms are highly similar in terms of
 - ACTIVATION DIVERSITY
 - \rightarrow they co-activate entries in the mental lexicon to a similar extent
 - COMPREHENSION QUALITY & NEIGHBOURHOOD DENSITY
 - \rightarrow they are comprehended equally well
 - \rightarrow they live in similarly dense neighbourhoods
- feminine explicits are **significantly different** as compared to masculine forms in regard to all semantic measures
- stereotypicality judgements do not show a significant effect

Research Question 1

Is the bias of masculine generics affected by stereotypicality? $\rightarrow \mathbf{no}$

Research Question 1

Is the bias of masculine generics affected by stereotypicality? $\rightarrow \mathbf{no}$

Research Question 2

Does linear discriminative learning offer an insight into the underlying nature of the masculine generic's bias?

 \rightarrow yes

• our findings are in line with assumptions found in previous research

- our findings are in line with assumptions found in previous research
 - Stahlberg et al. (2001)
 - masculine gender of [masculine] generics has a semantic component of "maleness"

- our findings are in line with assumptions found in previous research
 - Stahlberg et al. (2001)
 - masculine gender of [masculine] generics has a semantic component of "maleness"
 - Irmen & Linner (2005)
 - semantic similarity of masculine generics and explicits due to their resonance with the lexicon and each other

- our findings are in line with assumptions found in previous research
 - Stahlberg et al. (2001)

masculine gender of [masculine] generics has a semantic component of "maleness"

• Irmen & Linner (2005)

semantic similarity of masculine generics and explicits due to their resonance with the lexicon and each other

 Gygax et al. (2012) and Gygax et al. (2021) masculine generics activate the underlying representations of masculine explicits, leading to a semantic activation of masculine explicits, thus a male bias

• the male bias is due to the similar semantic features of the masculine generic and masculine explicit forms

- the male bias is due to the similar semantic features of the masculine generic and masculine explicit forms
- this leads to a 'male bias' in the language system itself

- the male bias is due to the similar semantic features of the masculine generic and masculine explicit forms
- this leads to a 'male bias' in the language system itself
- thus, our findings confirm the bias found in previous behavioural studies (e.g. Demarmels, 2017; Garnham et al., 2012; Gygax et al., 2008; Irmen & Kurovskaja, 2010; Irmen & Linner, 2005; Koch, 2021; Misersky et al., 2019; Stahlberg & Sczesny, 2001)

- the male bias is due to the similar semantic features of the masculine generic and masculine explicit forms
- this leads to a 'male bias' in the language system itself
- thus, our findings confirm the bias found in previous behavioural studies (e.g. Demarmels, 2017; Garnham et al., 2012; Gygax et al., 2008; Irmen & Kurovskaja, 2010; Irmen & Linner, 2005; Koch, 2021; Misersky et al., 2019; Stahlberg & Sczesny, 2001)
- future research will show

- the male bias is due to the similar semantic features of the masculine generic and masculine explicit forms
- this leads to a 'male bias' in the language system itself
- thus, our findings confirm the bias found in previous behavioural studies (e.g. Demarmels, 2017; Garnham et al., 2012; Gygax et al., 2008; Irmen & Kurovskaja, 2010; Irmen & Linner, 2005; Koch, 2021; Misersky et al., 2019; Stahlberg & Sczesny, 2001)
- future research will show
 - whether the LDL measures computed for our data are predictive of behavioural measures

- the male bias is due to the similar semantic features of the masculine generic and masculine explicit forms
- this leads to a 'male bias' in the language system itself
- thus, our findings confirm the bias found in previous behavioural studies (e.g. Demarmels, 2017; Garnham et al., 2012; Gygax et al., 2008; Irmen & Kurovskaja, 2010; Irmen & Linner, 2005; Koch, 2021; Misersky et al., 2019; Stahlberg & Sczesny, 2001)
- future research will show
 - whether the LDL measures computed for our data are predictive of behavioural measures
 - how (new) more neutral forms, e.g. Anwält*innen, AnwältInnen, perform (cf. Portuguese alun@s 'students', todxs 'everyone', amigues 'friends')

Thank you!

References 1/2

- Baayen, R. H., Chuang, Y.-Y., Shafaei-Bajestan, E., & Blevins, J. P. (2019). The discriminative Lexicon: A unified computational model for the lexicon and lexical processing in comprehension and production grounded not in (de)composition but in linear discriminative learning. Complexity, 2019, 1–39. https://doi.org/10.1155/2019/4895891
- Baayen, R. H., & Ramscar, M. (2015). Abstraction, storage and naive discriminative learning. *Handbook of Cognitive Linguistics, 39*, 100–120. https://doi.org/10.1515/9783110292022-006
- Chuang, Y.-Y., Vollmer, M. L., Shafaei-Bajestan, E., Gahl, S., Hendrix, P., & Baayen, R. H. (2021). The processing of pseudoword form and meaning in production and comprehension: A computational modeling approach using linear discriminative learning. *Behavior Research Methods*, *53*(3), 945–976. https://doi.org/10.3758/s13428-020-01356-w
- Demarmels, S. (2017). "Gesucht: Assistentin oder Sekretär der Geschäftsleitung" Gendersensitive Formulierungen in Stellenanzeigen aus der Perspektive der Textsorte. In *Stellenanzeigen als Instrument des Employer Branding in Europa*. https://doi.org/10.1007/978-3-658-12719-0_11
- Doleschal, U. (2002). Das generische Maskulinum im Deutschen. Ein historischer Spaziergang durch die deutsche Grammatikschreibung von der Renaissance bis zur Postmoderne. *Linguistik Online, 11(2)*. https://doi.org/10.13092/lo.11.915
- Gabriel, U., Gygax, P., Sarrasin, O., Garnham, A., & Oakhill, J. (2008). Au pairs are rarely male: Norms on the gender perception of role names across English, French, and German. *Behavior Research Methods*, *40*(1), 206–212. https://doi.org/10.3758/BRM.40.1.206
- Garnham, A., Gabriel, U., Sarrasin, O., Gygax, P., & Oakhill, J. (2012). Gender Representation in Different Languages and Grammatical Marking on Pronouns: When Beauticians, Musicians, and Mechanics Remain Men. *Discourse Processes, 49(6)*, 481–500. https://doi.org/10.1080/0163853X.2012.688184
- Goldhahn, D., Eckart, T., & Quasthoff, U. (2012). Building Large Monolingual Dictionaries at the Leipzig Corpora Collection: From 100 to 200 Languages. *Proceedings of the 8th International Language Resources and Evaluation (LREC'12)*.
- Gygax, P., Gabriel, U., Sarrasin, O., Oakhill, J., & Garnham, A. (2008). Generically intended, but specifically interpreted: When beauticians, musicians, and mechanics are all men. *Language and Cognitive Processes, 23(3)*, 464–485. https://doi.org/10.1080/01690960701702035

References 2/2

- Gygax, P., Sato, S., Öttl, A., & Gabriel, U. (2021). The masculine form in grammatically gendered languages and its multiple interpretations: a challenge for our cognitive system. *Language Sciences, 83,* 101328. https://doi.org/10.1016/j.langsci.2020.101328
- Gygax, P., Sato, S., Öttl, A., & Gabriel, U. (2021). The masculine form in grammatically gendered languages and its multiple interpretations: a challenge for our cognitive system. *Language Sciences, 83*, 101328. https://doi.org/10.1016/j.langsci.2020.101328
- Irmen, L., & Kurovskaja, J. (2010). On the semantic content of grammatical gender and its impact on the representation of human referents. *Experimental Psychology, 57(5)*, 367–375. https://doi.org/10.1027/1618-3169/a000044
- Irmen, L., & Linner, U. (2005). Die Repräsentation generisch maskuliner Personenbezeichnungen. *Zeitschrift Für Psychologie / Journal of Psychology, 213(3)*, 167–175. https://doi.org/10.1026/0044-3409.213.3.167
- Koch, M. (2021). *Kognitive Effekte des generischen Maskulinums und genderneutraler Alternativen im Deutschen eine empirische Untersuchung*. Master's Thesis. Technische Universität Braunschweig.
- Misersky, J., Majid, A., & Snijders, T. M. (2019). Grammatical Gender in German Influences How Role-Nouns Are Interpreted: Evidence from ERPs. *Discourse Processes, 56(8)*, 643–654. https://doi.org/10.1080/0163853X.2018.1541382
- Schmid, H. (1999). Improvements in part-of-speech tagging with an application to German. In S. Armstrong, K. Church, P. Isabelle, S. Manzi, E. Tzoukermann, & D. Yarowsky (Eds.), *Natural language processing using very large corpora* (pp. 13–25). Springer. https://doi.org/10.1007/978-94-017-2390-9_2
- Schmitz, D., Plag, I., Baer-Henney, D., & Stein, S. D. (2021). Durational Differences of Word-Final /s/ Emerge From the Lexicon: Modelling Morpho-Phonetic Effects in Pseudowords With Linear Discriminative Learning. *Frontiers in Psychology*, *12*. https://doi.org/10.3389/fpsyg.2021.680889
- Stahlberg, D., & Sczesny, S. (2001). Effekte des generischen Maskulinums und alternativer Sprachformen auf den gedanklichen Einbezug von Frauen. *Psychologische Rundschau, 52(3)*, 131–140. https://doi.org/10.1026//0033-3042.52.3.131
- Stahlberg, D., Sczesny, S., & Braun, F. (2001). Name Your Favorite Musician. *Journal of Language and Social Psychology, 20(4)*, 464–469. https://doi.org/10.1177/0261927X01020004004

 masculine generics and the explicit masculine are semantically most similar

- masculine generics and the explicit masculine are semantically most similar
- the explicit feminine is more similar to the explicit masculine than to masculine generics

- masculine generics and the explicit masculine are semantically most similar
- the explicit feminine is more similar to the explicit masculine than to masculine generics
- all comparisons are highly significant

 masculine generics and the explicit masculine are semantically most similar

- masculine generics and the explicit masculine are semantically most similar
- the explicit feminine is more similar to the explicit masculine than to masculine generics

- masculine generics and the explicit masculine are semantically most similar
- the explicit feminine is more similar to the explicit masculine than to masculine generics
- all comparisons are highly significant

- masculine generics and the explicit masculine are semantically most similar
- the explicit feminine is more similar to the explicit masculine than to masculine generics
- all comparisons are highly significant
- differences are more pronounced